Augmented Lagrangian Techniques for Solving Saddle Point Linear Systems

نویسندگان

  • CHEN GREIF
  • JAMES M. VARAH
  • Michael Saunders
چکیده

We perform an algebraic analysis of a generalization of the augmented Lagrangian method for solution of saddle point linear systems. It is shown that in cases where the (1,1) block is singular, specifically semidefinite, a low-rank perturbation that minimizes the condition number of the perturbed matrix while maintaining sparsity is an effective approach. The vectors used for generating the perturbation are columns of the constraint matrix that form a small angle with the null-space of the original (1,1) block. Block preconditioning techniques of a similar flavor are also discussed and analyzed, and the theoretical observations are illustrated and validated by numerical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems

One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...

متن کامل

An Augmented Lagrangian Method for Identifying Discontinuous Parameters in Elliptic Systems

The identification of discontinuous parameters in elliptic systems is formulated as a constrained minimization problem combining the output least squares and the equation error method. The minimization problem is then proved to be equivalent to the saddle-point problem of an augmented Lagrangian. The finite element method is used to discretize the saddle-point problem, and the convergence of th...

متن کامل

Convergence of a Class of Stationary Iterative Methods for Saddle Point Problems

A unified convergence result is derived for an entire class of stationary iterative methods for solving equality constrained quadratic programs or saddle point problems. This class is constructed from essentially all possible splittings of the n×n submatrix residing in the (1,1)block of the (n+m)×(n+m) augmented matrix that would generate non-expansive iterations in R. The classic multiplier me...

متن کامل

Analysis of block matrix preconditioners for elliptic optimal control problems

In this paper, we describe and analyse several block matrix iterative algorithms for solving a saddle point linear system arising from the discretization of a linear-quadratic elliptic control problem with Neumann boundary conditions. To ensure that the problem is well posed, a regularization term with a parameter is included. The first algorithm reduces the saddle point system to a symmetric p...

متن کامل

Comparison of Two Types of Preconditioners for Stokes and Linearized Navier-Stokes Equations

To solve saddle point systems efficiently, several preconditioners have been published. There are many methods for constructing preconditioners for linear systems from saddle point problems, for instance, the relaxed dimensional factorization (RDF) preconditioner and the augmented Lagrangian (AL) preconditioner are used for both steady and unsteady Navier-Stokes equations. In this paper we comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004